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Physical features o f  an electric discharge in a gas-liquid medium are investigated; a direct relationship 

between the entropy change and the fractal  nature of the medium itself is shown. Simplified equations and 

laws o f  conservat ion that describe the dynamics  of  the electric discharge in the two-phase liquid with 

allowance for the thermodynamic properties of  the medium as functions of its fractal structure are used. 

Pulsed pressure of an explosion that occurs in a high-voltage electric discharge in water is widely used in 

technology for leaking, shaping, and working of materials. A complete description of the phenomenon in question 
calls for a complex of investigations of electric and thermodynamic properties of a partically ionized plasma and a 

gas-vapor medium, the dynamics of shock waves formed in a compressible medium, and their interaction with a 

solid surface. Among the wide scope of problems, we can recognize the study of physical features  of an 

electrohydraulic effect in a multiphase medium that has received a great deal of attention recently [ 1-4 ]. This is 

due to the fact that a high-power explosion is necessarily accompanied by phase changes in the medium. Besides, 

we should take into account that, in practice, industrial water always contains bubbles of air (impurities) that do 

not practically alter the density of the liquid but lead to a strong change in the compressibility of the liquid and 

hence to the entire dynamics of the electroexplosion. Physical phenomena in a multiphase medium are always static 

in character. In the case of a two-phase liquid, the aforesaid manifests itself as strong nonlinearity - the turbulence 

and the fractal (structural) nature of the phenomenon. In the work, we also proposed an approach for allowing for 

the effect of the nonlinearity of the medium on its electrical characteristics. 
1. Physical Features of an Electric Discharge in a Two-Phase Liquid. Electric discharges whose charac- 

teristic time is evaluated as t = 2 : r ~  - 10 - 4 - 1 0  -6 sec are used for technical purposes. In this time interval, the 

working medium of macroscopic sizes has no time to exchange heat with the ambient medium and because of this 

one condition of adiabaticity of the process of electroexplosion is satisfied. The condition of equilibrium (isoentropy) 

should also be satisfied, which requires slowness of the process relative to the relaxation properties of the medium. 

This condition is not satisfied in electroexplosion, which becomes evident from a simple evaluation of the quantities. 

The characteristic relaxation time for an electronic plasma generated in electroexplosion is evaluated as the ratio 

of the Debye radius to the thermal rate 

Tr ~ rD/  v t _ ( m /  4arne2) l / 2 , (1) 

where m, n, and e are the mass, concentration, and charge of the electrons. In plants commonly used in practice, 
the pressure is P -  108-109 N/m 2 and the temperature is T -  104 K. Taking into account that P - n k T  we have 

T r - 1 0  -4 sec, i.e., the equilibrium condition is not satisfied. The entropy changes due to the structural  

rearrangement of the working medium. In the case of a two-phase liquid, because of the larger compressibility of 

the medium the perturbation velocity (the velocity of sound) will turn out to be smaller than the hydrodynamic 

velocity, and electroexplosion will necessarily be accompanied by the formation of shock waves, on the front of 
which all the hydrodynamic characteristics experience a jump. For this reason, use of an empirical equation of state 
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in the T h a t e  form [1 ], which holds true for an isoentropic process in pure water,  is not legitimate. We use the  

equation of a polytropic process 

P V  ~c = cons t ,  (2) 

where x is a polytropic exponent  dependent  on the structure of the  medium. The  necessi ty  of using a polytropic 

equation is also pointed to in [2 ], where the range of experimental  values of K for a real gas (water vapor) is given 

x = 1.01 - 2 .7 .  (3) 

If the ent ropy changes only due to the spatial r ea r rangement  of the medium (because of the absence of 

heat t r a n s f e r  t he re  is no dependence  on pressure  and tempera ture )  without al lowance for  the interact ion of 

macroscopic s tructure,  i.e., the nonideali ty of the medium, we can resort  to the relat ion 

x = (i  + 2 ) / i ,  (4) 

where i is the  degree  of freedom of the medium [5 ]. In the problem in question, i is the degree  of freedom of motion 

of the macroscopic structural elements formed in a nonlinear nonequil ibr ium medium in pulsed energy supply r a the r  

than of a molecular  level of motion. An example of structural mot ion is hydrodynamic  turbulence  [6 ], where i is 

governed by  the number  of individual vortices of the liquid. In developed turbulence, the n u m b e r  of macroscopic 

degrees of f reedom [7 ] is 

i - -  ( r m / r o )  3 --  (Re/Recr) 9 / 4 ,  (5) 

where r o and  r m are the space scales of the motion. In the problem in question, it is not  convenient  to use formula 

(5) since the  arbi trar iness exists in finding Recr. It is necessary to select a more universal me thod  for determinat ion 

of i. 

T h e  most  specific properties of the structural nature of a medium, whatever  its concrete  character,  a re  

fractal characterist ics.  The objects of a structural and self-similar composition are called fractals  [8 ]. We can re la te  

the fractal dimensional i ty  by the scaling index ? that characterizes spatial-invariant deformat ions  to the coefficient 

of gas content  ~o in a two-phase liquid. Let r 0 and r m be the scales of the structures of gaseous-phase bubbles in 

the two-phase  medium. Then  the corresponding fractal S ( ? )  and smooth S surfaces are  de te rmined  by the relat ion 

S ( ? ) / S  = ( r m / r o )  y . (6) 

In [10, 111, an example of calculation of ~, for concrete laws of fractal ization'of a medium is given where  

the limiting values ? ,  = 0.7925 and ?_L = 0.465 that correspond to isotropic and anisotropic cases are found. All 

possible forms of perturbations and deformations are shown to be found between them. In view of (6), for a fractal  

of spherical symmet ry  we have 

(r m / ro)Y / 2 3 S ( ? )  =4~a2f f ,  aef f =  a , V(?)  = 4 ~ a e f f / 3 ,  

i = V O , ) / V  = ( r m / r o ) 3 r / 2  . (7) 

We relate  the  scaling index ? to the volumetric gas content ~o. T h e  relative volume of the liquid phase is de termined  

by 

V l i q / ( V l i q  + Vg) = 1 - ~o, (8) 

where Vii q and  Vg are the volumes of the liquid and gaseous phases.  Using (6), in cylndr ical  and spherical cases, 

respectively, we have: 
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Fig. 1. Polytropic exponent  vs. average (D and local (ID gas contents of 

cylindrical (1) and spherical (2) volumes. 

(rm)/r 0 = (1 - ~o) - 1 / y  and (rm)/r 0 = (t  - ~o) - 2 /3 y  (9) 

Formulas (9) determine (rm)/r o of the gaseous phase in terms of the average value of ~o. 

For a local gas content  ~o, we need to find the local scale of the fractal s t ructures  rm/r 0 of the liquid phase.  

Calculating by integration the volume of liquid drops with a fractal surface, we obtain,  respectively, for cyl indrical  

and  spherical cases: 

r m 2 + 7 (I - ~p)l/v r m 3 + 7 (10) 
r 0 - T and - - -  (1 - ~o) 1/y r 0 3 

In (10), the limiting transition ~o ~ 0 corresponds to the limit 7 ~ 0; the topological dimensions of the object  itself 

are  d = 3 in spherical and d = 2 in cylindrical cases (considerat ion is given to the fractal surface of the liquid phase) .  

In the case of a bubble state of the medium (for an averaged space scale), the topological dimensions of the  space 

into which the object in question is placed are taken for convenience as d; therefore ,  in formulas (9) the  limit 

~o -~ 0 corresponds formally to 7 "* 1. 

In an electric discharge in a multiphase liquid, there  form complex interact ing fractals - mult ifractals  that  

have a set of fractal dimensions. The dimensions of a f i rs t -order  multifractal govern the entropy of the med ium 

[8 ]. Thus,  the entropy change in electroexplosion in a two-phase medium is closely connected with the  fractal  

na ture  of the latter. The  cavity of the discharge is basically filled with a vapor-l iquid component [2 ] and  part ia l ly  

with a plasma. If necessary,  the expression (rm/ro)y can also be found for the plasma. For this purpose ,  y is 

de termined  separately in terms of the multifractal dimensions [8 ], while r m is determined in terms of the  Debye  

radius of a multicomponent plasma. 

The  degree of freedom of macroscopic motions takes on practically all the  continuous values in the interval  

(1 ___ i < oo), while for a molecular level of motions, i a re  limited and discrete  (for example, for  mona tomic  

molecules, i -- 3, for diatomic molecules, i = 5). Consequently,  from (4) we obtain the interval I _< tr _< 3, which is 

similar to the experimental  range of x determined according to (3). From relat ions (4), (7), and (9), we obta in  the 

polytropic exponent  as a function of f and 7 for the averaged fractal scale: 

x =  [ 2 + ( 1 - ~ o ) - Z / Y l ( 1 - ~ o )  2/y and  x =  [ 2 + ( 1 - ~ o ) - a / ~ l ( 1 - ~ o )  3/~ (1:) 

and for the local fractal scale: 

tr = {2 + [(2 + 7 ) / 2  ]3 (1 - ~o) a/y} [2 / (2  + 7)]3 (1 - f,)-3/~, 

and  

and tc = {2 + [(3 + 7 ) / 3  ]3 (1 - ~o) a/y} [3 / (3  + 7) 1 a (1 - ~o) - 3 / y  (12) 
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respectively, for cylindrical and spherical volumes. Figure 1 shows the dependences of x calculated by (11) and 
(12) for y ~ ~,.. 

2. Basic Equations and the Laws of Conservation That Describe the Dynamics of an Electric Discharge in 

a Two-Phase Liquid. It is shown above that the presence of a gas content can be allowed for in terms of the 

polytropic exponents x. Then for a unit mass of the liquid of a two-phase medium, the equation of state is 

P = PI (P /Pl )  x , (13) 

where P1 and Pl are the prescribed pressures and densities. 

From the equations of motion, continuity,  and energy, for the liquid phase with allowance for its 

compressibility because of the formation of shock waves in electroexplosion [12 ], we can determine the velocity, 

the pressure, and the density as functions of the coordinate and time under the prescribed initial and boundary 

conditions. It is natural to adopt as boundary conditions the laws of conservation of mass, momentum, and energy 

on the front of a shock wave that moves with the velocity u.: 

P l  (Ul  --  U . )  = 1 0  2 (U 2 - -  U . ) ,  (14) 

P1 + Pl (Ul  - -  U*) 2 = P2 + P2 (u2 - -  U*) 2' (15) 

P1 (ul  - u*) 2 P2 (u2 - u*)2 (16)  
+ h-]-l + 2 - + + 2 ' 

2 
1 P c (17 )  e - -  - -  - , c =  (toP~p) 1/2 

r - -  l P  x ( x -  I) 

where c is the velocity of sound. From (14)-(17), u, is established in terms of the quantities sought. The law of 

expansion of the boundary of the discharge cavity a(t) is governed by the regime of releasing the power N(t)  of 

the electric energy converted to heat. According to the first law of thermodynamics, the energy-balance equation 

has the form 

N (t) = tc--~l d (P (a, att) v (a, t)) + p (a, t) dVat(a, t) (18) 

Formulas (14)- (18) permit a detailed numerical analysis of the problem stated. However investigations showed [1, 

2 ] that the result of modeling depends strongly on the selected form of N(t), hence on the law of expansion of the 

boundary of the cavity, which have not been established uniquely at present. Specific properties of the problem in 

question, i.e., thermodynamic properties of a two-phase medium as functions of its fractal structure, are added to 

this uncertainty. The fractal nature is a property of a strongly nonlinear medium. First of all, it is necessary to 

establish the form of the function N(t)  that allows for electrical properties of the medium as functions of the process 

itself occurring in it. 
3. Rate of Electroexplosion-Energy Release in a Nonlinear Medium. Different model expressions are used 

to describe the regime of energy release in an electric discharge in a liquid. A "triangular" approximation [1 ] that 

describes correctly the time dependence only in the first half-period of the discharge is employed most frequently. 

The power sinusoidal approximations of [13 ] fail to allow for the attenuation with time of the power supplied to 

the discharge. Although the approximations used describe satisfactorily the behavior of N(t)  in certain time intervals 

when the empirical constants are selected appropriately they are not quite convenient for construction of theoretical 
models because of the inevitability of large errors that occur in analytical operations (differentiation, integration, 

etc.). The experimental dependence of the power on time is an oscillating and rapidly damping curve [1 ]. To seek 
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Fig. 2. Released power of the discharge energy vs. z for: 1) a l = 0.1, 2) 0.2, 
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the form of N ( t )  that corresponds  to experiment,  we allow for the basic specific properties of the phenomenon  of a 

discharge in a liquid medium - its substantially nonl inear  character.  

T h e  electric circuit of the discharge in the liquid is a nonlinear oscillatory circuit [14 ] described by  the 

equation 

L d I  1 
dt + U (1) + -~ f Id t  = O, (19) 

where U(D is the nonl inear  voltage, dependent  on the current  strength I. The  volt-ampere characteristic of the 

electric circuit with nonl inear  resistance will be selected in the form 

where a 1 and /3  are constants.  The  choice of the simplest dependence in the form of (20) is substant iated by the 

fact that  oscillatory phenomena  must  not be described by even powers of the argument,  since in averaging t hey  do 

not lead to the  appea rance  of a cons tant  (nonosci l la tory)  shift  of the function from its equi l ibr ium value.  

Differentiat ing (20) with respect to time and introducing a new constant a,  we have , 

--dZI + a (1 + / 3 f l )  _aI + i = o ,  r = ~Oot - - -  
dr 2 dr 

t a ~- a I ( C / L )  I / 2  (21) 
(LC)  I / 2 '  

Equat ion (21) for negative parameters a and /3  coincides with the Van der Pol equation, known in the 

theory of nonl inear  oscillations [ 15 ]. Using the method of variation of parameters,  we obtain a solution of (21) in 

the form 

2 exp ( -  e r r /2)  sin r 
I (r) = 

[4 +/3  --/3 exp ( -  a r ) ] l / 2 "  
(22) 

When fl --, 0 (22) yields the known solution for a l inear electric circuit with damping 

I (T) = exp ( -  a v / 2 )  sin T. (23) 

The equation sought for the power N(r)  has the form 

N (T) = I U  = a 1 ( L / C )  1 / z  [ ?  (~) + f l I  ( z ) 4 / 3 ] .  (24) 

697 



Figure 2 gives time variations in the power for different a 1 (t5 = a13), which show that expression (24) 

describes correctly the experimental dependence of the power on time as an oscillating curve with damping [1 ]. 

The latter occurs more rapidly, the larger is a 1. 
The commonly used formula for calculating the power 

N (T) = / 2  (z) R (25) 

preassumes a linear relationship with a constant coefficient of resistance R between the voltage and the current 

(Ohm's law). The first term in (24) corresponds to the linear U = U(/), while the second term corresponds to a 

nonlinear relationship. 

4. Dynamics of the Expansion of the Cavity of an Electric Discharge in a Two-Phase Liquid. Using the 

regularity of the release of electric discharge energy found, we can trace the evolution of the discharge space and 

the pressure in it. We investigate the effect of the two-phase nature and the attendant fractal nature of the medium 

on the dynamics of the phenomenon. The indicated characteristics are considered to be integral and referring to 
the entire volume in which the electric discharge is initiated. For this reason, we will employ only the integral 

relations (14)- (17) and the laws of conservation of dynamic and thermodynamic (18) quantities without allowance 

for a space variation in the dynamic characteristics. In the energy-balance equation (18), we use the maximum 

pressure attained on the shock-wave front. Then from (18) we can seek the time dependence of the boundary of 

expansion of the discharge cavity a(t), which moves with the shock-wave velocity: 

u. = da ( t ) /d t .  (26) 

From the Hugoniot relations (14)-(17) for a "strong wave" we have [12 ] 

2 
Pm= 2t90 u,/(~c + 1). (27) 

We consider that Po and P0 are negligibly small ahead of the shock-wave front (in an unperturbed medium). 

Allowing for formulas (18), (26), and (27), we obtain 

2pox (da(t)~ 2 d V ( a , t )  
N ( t ) -  2 / / (28) 

x - 1  ~ dt ) dt 

where we disregard the derivative of pressure with respect to time. This approach means that P(t) is determined 

by a successive approximation: first, P is taken to be Pro; subsequently, P(t) is sought based on the expression 

found for a(t). 
Expressing the volume in terms of the linear dimension of the expansion of the discharge cavity, we write 

( j +  1) d ( t )  ~(da(t))32p~ } tc 2 -  1 V = C / + I  ' C I = ~ I '  C 2 = 4 ~ / 3 "  

From (29), there follows the law of expansion of the discharge cavity with time 

(29) 

where 

1/(3+5 

+ a (0), (30) 

B j ( Q =  0(1 + j )  C 
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Fig. 4. Pressure in the discharge channel vs. time for the case of cylindrical 

symmetry: a) r = 2.5; a l :  1) 0.1, 2) 0.4, 3) 0.9; b) a I = 0.4; r :  1) 3, 2) 2.27, 

3) 1.63, 4) 1.11. 

In particular, 

B1 = (/. ,(])3/8 (16/27C1Po)I/4, B2 = (LC)3/so (125/162C2Po)1/5 

Calculat ions by (30) (see Fig. 3) show that this expression describes correctly the character of the 

expansion with time of the increase in a(O observed in the experiment [16 ]. The effect of the two-phase na ture  

of the medium on the dynamics of a discharge channel is allowed for in terms of the polytropic exponent to. 

The evolution of the pressure with time in an expanding cavity of the discharge can also be traced using 

(18), considering now P -- P(t) to be a variable and employing the expression found for a(r) .  When the volume is 

expressed in terms of a(~) Eq. (18) will be represented as 

dP (Q/dr + f (0 P (T) = g (~), (31) 

f (r) = r (j + 1) da (Q , (32) 

a (r) I - j  dr 

g ( 0  = (~c - 1) m ( 0  ( L C )  I / 2 

Solution of Eqs. (31)-(33) has the form 

Cj a (01 -]  (33) 

699 



IJ 

10 

7 
4 
t 

0 O.2 O.4 O.6 O.8 

Fig. 5. Maximum pressure vs. gas content of a flow by the averaged space (1) 
and local (2) fractal scales. 

P(~) = exp (-S/'(Q dr){1 + S [g(~)exp (+ ff(~) d~)] dT}. (34) 

The pressures calculated by formula (34) and given in Fig. 4 confirm the nonmonotonic behavior of P(~) 

observed in the experiment  [1 ]. Although a(T) increases and decreases smoothly (both theoretically and 

experimentally), P(r) is ambigously determined by the inverse proportionality to the area of the discharge cavity 

(~a2(T)) since its evolution depends on the derivative a(Q. Figure 4 shows the time variation of the pressure in 

the discharge channel as a function of the parameter a 1 (the linear portion of electrical resistance) and the 

polytropic exponent k. The maximum pressure Pm increases with a l ;  the time interval in which it is attained 

decreases. The effect of the polytropic exponent (the gas content ~,) on the pressure evolution is unambiguous. In 

a closed volume, where the average gas content is determined, the pressure can be the highest for ~o - 0.6 (Fig. 5), 
which corresponds to x - 1.4, which describes adiabatic expansion. 

In the case of comparability of the interelectrode gap l with the dimensions of fractal structures rm, which 

occurs when l - r  m - 1 mm, we need to employ the local gas content T. The polytropic exponent x increases sharply 

with ~o, the process becoming isochoric. As the gas content ~ increases the maximum attainable pressure drops (Fig. 

5), and the evolution of the pressure with time becomes steeper. However, here, it should be taken into account 

that, for 7' --- 0.3 (x ___ 3), the electrohydraulic discharge is practically not initiated. 

N O T A T I O N  

V, volume of the medium; V(7), fractal volume of the liquid; L, inductance; C, capacity; Re and Recr, 

Reynolds number and its critical value; k, Boltzmann constant; a, characteristic scale of the fractal structure; aeff, 

effective scale; l, interelectrode gap (the length of the discharge of cylindrical symmetry); N, power of energy 

release in electric discharge in the liquid; ~o 0, cyclic frequency dependent on electrical characteristics; t, time; 3, 

cyclic time; j - -  1, 2, for cylindrical and spherical geometries of the discharge cavity. Subscripts: 0 and m denote 

the minima and the maxima of the quantities; r, relaxation; t, thermal. 
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